CANINE CALCIUM PHOSPHATE CARBONATE UROLITHS IN DOGS

Like struvite, calcium phosphate carbonate forms as a consequence of urinary tract infection with bacteria that produce the enzyme urease. Uroliths recur when urinary tract infections are inadequately prevented.

Calcium phosphate carbonate commonly forms in breeds that are also at risk for calcium oxalate uroliths (Shih Tzu, Bichon, miniature Schnauzer, etc.). We hypothesize that increased calcium excretion in combination with urinary tract infection are important risk factors for calcium phosphate carbonate. Therefore, avoid prevention therapies that increase the risk for calcium oxalate (i.e. do not overly acidify urine).

PREVENTION

** Diagnostic Considerations**
- Identify and eradicate structural and functional risk factors for recurrent infections.
- Culture the urine.

** Medical Considerations**
- Culture and susceptibility testing provides the most accurate method for selecting effective antimicrobials. Penicillins (e.g. amoxicillin) are usually effective against the most common urease producing bacteria (i.e. Staphylococcus sp.)

** Nutritional Considerations**
- Canned foods for older dogs which are lower in protein, phosphorus, and calcium (<5.5g, <170mg, <150mg per 100 kilocalories, respectively), that do not over-acidify urine (e.g. Hill's g/d, c/d Multicare, Science Diet Mature Adult Gourmet Turkey or Beef Entrée, other diets promoting urine pH≥6.5)

** Monitoring Considerations**
- Periodic urine cultures (e.g. every 3 months) to manage recurrent infections before uroliths recur.

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.**

Indepth recommendations and references are available on our website: urolithcenter.org under the resources tab.
CANINE CALCIUM PHOSPHATE CARBONATE UROLITHS IN DOGS

Uroliths composed primarily of calcium phosphate carbonate are uncommon. However, this mineral in small quantities is commonly associated with uroliths composed of struvite because both minerals form as a consequence of urinary tract infection with bacteria (e.g., Staphylococcus sp. & Proteus sp.) that produce urease. When urease hydrolyzes urea, carbonates are formed and urine pH increases; both are risk factors for calcium phosphate carbonate precipitation. Although struvite is readily amenable to medical dissolution, calcium phosphate carbonate appears less amenable to a similar dissolution protocol. It may be possible that struvite uroliths that contain smaller amounts of calcium phosphate carbonate, (e.g. less than 30% in any layer) can be medically dissolved by protocols designed for struvite dissolution (see recommendations for Canine Struvite Uroliths at urolithcenter.org).

Calcium phosphate carbonate uroliths primarily form in female dogs (72%) presumably because females are at greater risk for urinary tract infections than male dogs. We have also recognized that breeds that form calcium phosphate carbonate uroliths (Shih Tzu, Bichon, miniature Schnauzer, etc.) are similar to those at risk for calcium oxalate uroliths. Therefore, we hypothesize that increased calcium excretion in combination with urinary tract infection with bacteria that produce urease are important risk factors favoring calcium phosphate carbonate urolith formation.

PREVENTION

Medical Considerations

- AMOXICILLIN
 Penicillins are usually effective against the most common urease-producing bacterium (i.e., Staphylococcus sp.).

Nutritional Considerations

- CANNED FOODS FOR SENIOR DOGS
 Foods for older dogs that are lower in protein, phosphorus, and calcium (<5g, <170mg, <140mg per 100 kilocalories, respectively), which do not promote acidic urine are usually associated with decreased calcium and phosphorus excretion.

Monitoring Considerations

- URINE CULTURE
 Periodic urine cultures for aerobic bacteria to detect recurrent infections before urolith recurrence.
PREVENTION OF CALCIUM PHOSPHATE CARBONATE UROLITHS IN DOGS

Monitor: Urine culture (± urinalysis) in 1 month and then every 3 to 6 months
Consider medical imaging every 6 months, or sooner in patients with recurrent urinary signs

Negative Culture
- Repeat Culture and UA every 3 to 6 months.
- Repeat culture with any signs of emerging infection (e.g., excessive licking of vulva, urinating in house, pollakiuria, hematuria, etc.)

Positive Culture
- Consider type of therapy based on urolith location and prediction of mineral type.
- Submit retrieved uroliths for quantitative mineral analysis.
- Repeat Culture and UA every 3 to 6 months.
- Repeat culture with any signs of emerging infection (e.g., excessive licking of vulva, urinating in house, pollakiuria, hematuria, etc.)

Calcium Oxalate Crystalluria
- Identify and eradicate structural (via vaginourethrocystoscopy, contrast vaginourethrocystography, and ultrasonography) and functional (via urine cortisol to creatinine ratio, serum biochemical and thyroid profiles, and neurological exam) risk factors for recurrent infections
- Initiate antimicrobial therapy based on susceptibility results.
- Verify antimicrobial effectiveness (culture urine during therapy)
- With additional recurrent infections, administer full dose antimicrobics for 7-14 days and then consider low-dose (1/3 to 1/2 daily dose), long-term (9 to 12 months), nightly antimicrobics; monitor with periodic urine cultures.

Uroliths
- Verify persistent, in vivo crystalluria by reevaluating an appropriately collected (in hospital) fresh urine sample analyzed within 30 minutes
- If persistent and in breeds at increased risk for CaOx uroliths (Bichon, Miniature schnauzer, Yorkshire terrier, Shih Tzu, Lhasa Apso, others), discontinue any diets that promote formation of acidic urine and consult dietary and non-dietary recommendations for calcium oxalate prevention

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.**