CANINE CALCIUM OXALATE UROLITHS
Calcium oxalate (CaOx) is a common and difficult stone to prevent because factors responsible for formation are incompletely understood. It is accepted that crystal growth and possibly initial crystal formation are at least partly a reflection of urine supersaturation. Therefore, controlling risk factors promoting urine CaOx supersaturation (e.g. hypercalciuria, hyperoxaluria, hyperaciduria, hypocitraturia, and highly concentrated urine) should minimize urolith recurrence.

PREVENTION

<table>
<thead>
<tr>
<th>DIAGNOSTIC CONSIDERATIONS</th>
<th>MEDICAL CONSIDERATIONS</th>
<th>NUTRITIONAL CONSIDERATIONS</th>
<th>MONITORING CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Although rare, identify and eliminate hypercalcemia by determining serum concentrations of ionized and total calcium.</td>
<td>Additional water to reduce urine specific gravity below 1.020. Potassium citrate (75mg/kg q12-24hr), if urine pH is consistently less than 6.5. Hydrochlorothiazide (2mg/kg q12hr) with highly recurrent urolithiasis if not hypercalcemic.</td>
<td>Canned foods that do not overly acidify urine that contain moderate to lower levels of animal protein (e.g. Hill’s c/d Multicare, g/d, u/d, Science Diet Adult 7+ Turkey/Barley Entree or Beef/Barley Entree, others).</td>
<td>Urinalysis every 3 to 6 months to adjust pH to 6.5 to 8.0, and urine specific gravity to 1.020 and lower. Medical imaging every 6 to 12 months to detect recurrent stones when small to permit their easy removal without surgery.</td>
</tr>
</tbody>
</table>

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.

In depth recommendations and references are available on our website: urolithcenter.org under the resources tab.
CANINE CALCIUM OXALATE UROLITHS

Calcium oxalate (CaOx) is one of the most common stones in the urinary tract of dogs.\(^1\) Although formation of CaOx uroliths is associated with a complex and incompletely understood sequence of events, it is accepted that initial crystal formation and subsequent crystal growth are at least partly a reflection of urine supersaturation. Therefore, controlling risk factors promoting urine CaOx supersaturation (e.g. hypercalciuria, hyperoxaluria, hyperaciduria, hypocitraturia, and highly concentrated urine) should minimize urolith recurrence.

Consider These Facts:

Experienced surgeons failed to remove all uroliths in 15% of dogs.\(^2,3\) Therefore, be diligent during surgery, and perform medical imaging immediately following surgery to verify complete urolith removal.

Studies have confirmed the ability of diets to reduce urine CaOx saturation. However, selecting the best diet is challenging because diet efficacy determined using clinically relevant endpoints (i.e. urolith recurrence), has yet to be published. Of the diets marketed to prevent CaOx, Prescription Diet\textregistered u/d\textregistered had the lowest concentrations of urinary calcium and oxalate, achieving the most appropriate pH in urolith-forming dogs.\(^4\) We use Prescription Diet\textregistered w/d\textregistered, Prescription Diet\textregistered c/d\textregistered Multicare or Prescription Diet\textregistered g/d\textregistered to manage hypertriglyceridemic Miniature Schnauzers and dogs with multiple diseases in which Prescription Diet\textregistered u/d\textregistered is less suitable.

Epidemiologic studies indicated that the strongest association between CaOx urolith formation and diet was the diets’ propensity to over-acidify urine; diets promoting urine pH less than 6.59 were at highest risk.\(^5\) Oxalobacter formigenes is an intestinal bacterium that ingests oxalate as its sole nutrient.\(^6\) By consuming dietary oxalate in the intestine, less oxalic acid is available for absorption and less is excreted in urine. To preserve healthy populations of intestinal Oxalobacter, avoid indiscriminant use of antimicrobics.

In a retrospective study of uroliths formed around a suture nidus, the majority were composed of calcium oxalate.\(^7\) To minimize iatrogenic urolith formation, use suture patterns that minimize suture exposure to the bladder lumen.

Medical Considerations:

- Hypercalciuria, a risk factor for CaOx urolithiasis, has resulted from hypercalcemia, metabolic acidosis, high sodium consumption, and vitamin D excess. Avoid these risk factors.

Nutritional Considerations:

- Avoid calcium supplements independent of meals & high oxalate foods (e.g. chocolate, nuts, rhubarb, spinach).
- High moisture foods (i.e. canned formulations) are more effective because increased water consumption is associated with decreased urine concentrations of calculogenic minerals. Feed canned foods and/or add increasing amounts of water to food until urine specific gravity is less than 1.020.

Pharmacological Considerations:

- Consider potassium citrate (75mg/kg q12-24hr), if urine pH is consistently less than 6.5.
- Consider vitamin B6 (2 to 4mg/kg q 24 to 48 hr) in patients consuming primarily human food or diets with insufficient B6 content.
- Consider hydrochlorothiazide (2mg/kg q12hr) with highly recurrent urolithiasis in dogs without hypercalcemia.
MINIMIZING CALCIUM OXALATE UROLITH RECURRENCE IN DOGS

Therapy: Long-term use of diets specially formulated with reduced levels of calcium and oxalate that promote formation of neutral to alkaline urine are essential to prevent these highly recurrent uroliths. Prescription Diet c/d Multicare or u/d and some diets for senior dogs fit these criteria.

Monitor: Urinalysis and medical imaging in 1 month and then every 3 to 6 months. Sooner in patients with recurrent urinary signs.

3. Grant D. Frequency of incomplete urolith removal...in dogs. JAVMA. 2010;210:763
4. Lulich J. Calcium oxalate: biologic behavior and risk factor management. ACVIM Forum Proceedings, 2009,
8. Lulich J. Voiding urohydropropulsion a nonsurgical technique. Current Veterinary Therapy XII, SAP. 1995, p1003

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.

**Urine pH > 6.5
USG < 1.020 without CaOx crystalluria
These parameters are ideal to minimize CaOx recurrence

- Continue therapy and monitor every 3 to 6 months
- Consider canned foods or add water to food to lower USG.
- Consider diets that promote formation of less acidic urine (Prescription Diet c/d Multicare or u/d) or use urinary alkalinizes
- Consider voiding urohydropropulsion for uroliths small enough to void.
- Stones can be left alone in some patients without clinical signs.
- With persistent clinical signs, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

**Calcium Oxalate Crystalluria

- Verify persistent in vivo crystalluria by reevaluating an appropriately collected (in hospital) fresh urine sample analyzed within 30 minutes
- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5
- Struvite is clinically insignificant in the absence of urinary tract infection.
- Bacteria producing urease are usually required for struvite urolith formation in dogs.

<table>
<thead>
<tr>
<th>Urine pH < 6.5</th>
<th>Specific Gravity >1.020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Oxalate Crystalluria</td>
<td></td>
</tr>
<tr>
<td>Struvite Crystalluria</td>
<td></td>
</tr>
<tr>
<td>Uroliths</td>
<td></td>
</tr>
</tbody>
</table>

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5
- Struvite is clinically insignificant in the absence of urinary tract infection.
- Bacteria producing urease are usually required for struvite urolith formation in dogs.

- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Urine pH < 6.5
USG < 1.020
With CaOx crystalluria

- Urinary alkalinizes
- Consider canned foods or add water to food to lower USG.
- With persistent CaOx crystalluria, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.