CANINE CALCIUM OXALATE UROLITHS
Calcium oxalate (CaOx) is a common and difficult stone to prevent because factors responsible for formation are incompletely understood. It is accepted that crystal growth and possibly initial crystal formation are at least partly a reflection of urine supersaturation. Therefore, controlling risk factors promoting urine CaOx supersaturation (e.g. hypercalciuria, hyperoxaluria, hyperaciduria, hypocitraturia, and highly concentrated urine) should minimize urolith recurrence.

PREVENTION

<table>
<thead>
<tr>
<th>DIAGNOSTIC CONSIDERATIONS</th>
<th>MEDICAL CONSIDERATIONS</th>
<th>NUTRITIONAL CONSIDERATIONS</th>
<th>MONITORING CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Although rare, identify and eliminate hypercalcemia by determining serum concentrations of ionized and total calcium. Genetic testing for Hereditary Calcium Oxalate Urolithiasis, Type 1 (CaOx1) in at-risk breeds (English Bulldog, Boston Terrier, Bullmastiff, Rottweiler, American Staffordshire Terrier and related breeds), is available at the UMN Canine Genetics Laboratory.</td>
<td>Additional water to reduce urine specific gravity below 1.020. Potassium citrate (75mg/kg q12-24hr), if urine pH is consistently less than 6.5. Hydrochlorothiazide (2mg/kg q12hr) with highly recurrent urolithiasis if not hypercalcemic.</td>
<td>Canned foods that do not overly acidify urine that contain moderate to lower levels of animal protein (e.g. Hill’s c/d Multicare, g/d, u/d, Science Diet Adult 7+ Chicken & Barley Entree, others).</td>
<td>Urinalysis every 3 to 6 months to adjust pH to 6.5 to 8.0, and urine specific gravity to 1.020 and lower. Medical imaging every 6 to 12 months to detect recurrent stones when small to permit their easy removal without surgery.</td>
</tr>
</tbody>
</table>

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.**

Support from Hills Pet Nutrition, veterinarians, and pet owners make our work possible.
NEW: The Canine Genetics Laboratory at the University of Minnesota's College of Veterinary Medicine discovered a mutation that is strongly associated with risk for calcium oxalate stones. The mutation was first identified in English Bulldogs but is also present in related breeds (e.g. Boston Terrier, Bullmastiff, Havanesse, Rottweiler, American Staffordshire Terrier). The condition associated with this mutation is being referred to as: Hereditary Calcium Oxalate Urolithiasis, Type 1 (CaOx1). A genetic test for CaOx1 is now available through the Canine Genetics Lab. We are now conducting research to determine which therapies are most likely to reduce stone risk specifically for dogs with hereditary CaOx1.

We are actively working to discover additional genetic risk factors for CaOx stones in dogs. If you own a dog that has formed CaOx stones and are interested in helping with this research, please visit our CaOx study website for details.

DIET QUESTIONS

Calcium oxalate (CaOx) is a common and difficult urolith to prevent because factors responsible for formation are incompletely understood. Selecting the most effective diet is challenging because appropriate studies (prospective, case-controlled, ≥3yr) evaluating recurrence have not yet been performed. Therefore, prevention strategies are based on physiology of calcium and oxalate excretion, surrogate endpoints (e.g. RSS) and identification of risk factor in retrospective studies. In general, ~50% of dogs reform CaOx uroliths within 2 years.

SOME FEATURES TO CONSIDER WHEN SELECTING A DIET:

1. **Select Moist Foods**—canned foods contain a lot of water. Water consumption increases urine volume and decreases urine concentrations of calcium and oxalate. More water = less mineral precipitation.
2. **Avoid Over-Acidifying Foods**—over acidification of urine is a risk factor for calcium oxalate partly because it increases calcium excretion. It is likely that other protective factors are also altered (decreases inhibitors, precipitates proteins, etc.)
3. **Avoid High Sodium Foods**—As the body gets rid of unwanted sodium, calcium is lost in urine.
4. **Avoid High Protein Foods**—animal protein consumption promotes acidic urine. Lower protein promotes diuresis and minimizes calcium and oxalate concentrations in urine.
5. **Avoid Phosphorus Restricted Foods**—Pyrophosphate is an inhibitor of calcium oxalate. Low phosphorus foods may stimulate vitamin D production and promote calcium absorption.

SOME KEY POINTS

- Recommendations for CaOx prevention can be found at urolithcenter.org under the Resources tab.
- Listed diet selections are those that we have evaluated and published results, researched in the literature, or have experience with in managing our clinical patients.
- We avoid some marketed preventative diets because they are overly acidifying or too high in sodium.
- Some over-the-counter diets (e.g. Science Diet Adult 7+ Chicken & Barley, others) may have suitable nutritional profiles similar to our recommended dietary features for CaOx prevention.
- Feed moist diets, or add water to dry formulations.
- Minimize vitamin and mineral supplements.
- Monitor urine: Goal = specific gravity ≤ 1.020 and pH ≥ 6.5 (add potassium citrate to ↑ urine pH if needed).
- Image dogs every 6 to 12 months to allow non-surgical removal by voiding urohydropropulsion or basket retrieval.

These general recommendations are based on urolith analysis and may not be appropriate for all pets. We advise reviewing manufacturer’s literature regarding selected therapeutic foods to determine indications and contraindications. For pets with multiple health concerns, we suggest that the selection of diet should take into consideration all health needs of the pet, and prioritize nutritional needs on the most serious disease, which is not always the stone disease.
CANINE CALCIUM OXALATE UROLITHS
Calcium oxalate (CaOx) is one of the most common stones in the urinary tract of dogs.\(^1\) Although formation of CaOx uroliths is associated with a complex and incompletely understood sequence of events, it is accepted that initial crystal formation and subsequent crystal growth are at least partly a reflection of urine supersaturation. Therefore, controlling risk factors promoting urine CaOx supersaturation (e.g. hypercalciuria, hyperoxaluria, hyperaciduria, hypocitraturia, and highly concentrated urine) should minimize urolith recurrence.

Medical Considerations:
- Hypercalciuria, a risk factor for CaOx urolithiasis, has resulted from hypercalcemia, metabolic acidosis, high sodium consumption, and vitamin D excess. Avoid these risk factors.

Nutritional Considerations:
- Avoid calcium supplements independent of meals & high oxalate foods (e.g. chocolate, nuts, rhubarb, spinach).
- High moisture foods (i.e. canned formulations) are more effective because increased water consumption is associated with decreased urine concentrations of calculogenic minerals. Feed canned foods and/or add increasing amounts of water to food until urine specific gravity is less than 1.020.

Pharmacological Considerations:
- Consider potassium citrate (75mg/kg q12-24hr), if urine pH is consistently less than 6.5.
- Consider vitamin B6 (2 to 4mg/kg q 24 to 48 hr) in patients consuming primarily human food or diets with insufficient B6 content.
- Consider hydrochlorothiazide (2mg/kg q12hr) with highly recurrent urolithiasis in dogs without hypercalciemia.

Consider These Facts:
Experienced surgeons failed to remove all uroliths in 15% of dogs.\(^2,3\) Therefore, be diligent during surgery, and perform medical imaging immediately following surgery to verify complete urolith removal.

Studies have confirmed the ability of diets to reduce urine CaOx saturation. However, selecting the best diet is challenging because diet efficacy determined using clinically relevant endpoints (i.e. urolith recurrence), has yet to be published. Of the diets marketed to prevent CaOx, Prescription Diet\(^u/d\)\(^5\) had the lowest concentrations of urinary calcium and oxalate, achieving the most appropriate pH in urolith-forming dogs.\(^4\) We use Prescription Diet\(^w/d\), Prescription Diet\(^c/d\) Multicare or Prescription Diet\(^g/d\) to manage hypertriglyceridemic Miniature Schnauzers and dogs with multiple diseases in which Prescription Diet\(^u/d\) is less suitable.

Epidemiologic studies indicated that the strongest association between CaOx urolith formation and diet was the diets’ propensity to over-acidify urine; diets promoting urine pH less than 6.59 were at highest risk.\(^5\) Oxalobacter formigenes is an intestinal bacterium that ingests oxalate as its sole nutrient.\(^6\) By consuming dietary oxalate in the intestine, less oxalic acid is available for absorption and less is excreted in urine. To preserve healthy populations of intestinal Oxalobacter, avoid indiscriminant use of antimicrobics.

In a retrospective study of uroliths formed around a suture nidus, the majority were composed of calcium oxalate.\(^7\) To minimize iatrogenic urolith formation, use suture patterns that minimize suture exposure to the bladder lumen.
MINIMIZING CALCIUM OXALATE UROLITH RECURRENCE IN DOGS

Therapy: Long-term use of diets specially formulated with reduced levels of calcium and oxalate that promote formation of neutral to alkaline urine are essential to prevent these highly recurrent uroliths. Prescription Diet c/d Multicare or u/d and some diets for senior dogs fit these criteria.

Monitor: Urinalysis and medical imaging in 1 month and then every 3 to 6 months. Sooner in patients with recurrent urinary signs.

** Review manufacturer’s therapeutic food literature to determine indications/contraindications. For pets with multiple health concerns, consult a veterinary nutritionist to select an optimal food.

Urine pH > 6.5

USG < 1.020

without CaOx crystalluria

These parameters are ideal to minimize CaOx recurrence

- Continue therapy and monitor every 3 to 6 months
- Consider voiding urohydropropulsion for uroliths small enough to void.
- Stones can be left alone in some patients without clinical signs.
- With persistent clinical signs, select appropriate method to remove uroliths.
- Submit retrieved uroliths for quantitative analysis.

- Specific Gravity >1.020
- Consider canned foods or add water to food to lower USG.

- Calcium Oxalate Crystalluria
- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5
- Struvite Crystalluria
- Verify persistent in vivo crystalluria by reevaluating an appropriately collected (in hospital) fresh urine sample analyzed within 30 minutes
- Struvite is clinically insignificant in the absence of urinary tract infection.
- Bacteria producing urease are usually required for struvite urolith formation in dogs.

- Uroliths

- Urine pH<6.5

- USG<1.020 without CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5

- Uroliths

- Urine pH<6.5

- USG<1.020 with CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5

- Uroliths

- Urine pH<6.5

- USG<1.020 with CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5

- Uroliths

- Urine pH<6.5

- USG<1.020 with CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5

- Uroliths

- Urine pH<6.5

- USG<1.020 with CaOx crystalluria

- With persistent CaOx crystalluria insure that serum calcium concentration is normal USG<1.020 and U pH >6.5

- Uroliths